CFD wiTH OPENSOURCE SOFTWARE

A COURSE AT CHALMERS UNIVERSITY OF TECHNOLOGY
TAUGHT BY HAKAN NILSSON

Project work:

Description of
adjointShapeOptimizationFoam and how
to implement new objective functions

Developed for OpenFOAM-2.2.x

Peer reviewed by:
DANIEL LINDBLAD
OLIVIER PETIT

Author:
Ulf NILSSON

Disclaimer: This is a student project work, done as part of a course where OpenFOAM and some
other OpenSource software are introduced to the students. Any reader should be aware that it
might not be free of errors. Still, it might be useful for someone who would like learn some details
similar to the ones presented in the report and in the accompanying files. The material has gone
through a review process. The role of the reviewer is to go through the tutorial and make sure that
it works, that it is possible to follow, and to some extent correct the writing. The reviewer has no
responsibility for the contents.

January 20, 2014

Table of contents

1 Theory
1.1 Boundary conditions e e e e e
1.1.1 Power dissipation
1.1.2 Flow uniformity at the outlet
1.2 Steepest descent algorithm oo
2 adjointShapeOptimizationFoam
2.1 Thesolver e e e e
2.1.1 adjointShapeOptimizationFoam.C
2.1.2 createFields. H
2.1.3 Boundary conditions oL Lo

3 Modify the solver

3.1 Copy and rename the original solver 0L,
3.2 Changing the sign in the implementation of the steepest descent algorithm
3.3 Changing the cost function L

3.3.1 Flow uniformity at the outlet

3.3.2 Power dissipation
3.4 Including the sensitivity of each cell 0.
3.5 Print the cost function L

4 Setting up a case

4.1 Preprocessing
4.1.1 Initial and boundary conditions
4.1.2 User defined parameters Lo
4.1.3 System settings
4.1.4 Mesh. o e

4.2 Post processing
4.2.1 Using gnuPlot to plot the value of the cost function

5 Results

5.1 Flow uniformity at the outlet o
5.1.1 pitzDaily oL

5.2 Power dissipation oL e
5.2.1 pitzDaily
5.2.2 Pipebendexample L

6 Limitations
6.1 Project suggestions L

26
27
27
29
29
30
30
30

32
32
32
35
35
38

44

TABLE OF CONTENTS TABLE OF CONTENTS

Introduction

CFD simulations have gained an increased importance in product design and development appli-
cations. The advantages of optimizing shape parameters to increase efficiency have grown in im-
portance in many idustrial branches. The car industry being the perfect example, where a small
reduction in drag results in both economical gains for the customer and environmental benefits,
increasing the competitiveness of the product.

However the optimization problem is not trivial. Considering the problem of reducing the drag of
a geometric shape the decision variables are continuous functions and could result in a very large
number of variables when discretized. Hence, finding an efficient optimization algorithm is impor-
tant.

In this report a solver applying a gradient based method, using the adjoint approach to compute
the sensitivities with respect to the design variables, is studied. The design variable, the porosity of
each cell, o, is then used to punish the unfavourable cells. The update is done in a “one-shot” ap-
proach, using partially converged fields to compute the sensitivity and a steepest descent algorithm
to update the porosity. A short summary of the theory will be included, however for more detailed
derivations the reader is referred to the articles given below.

The report aims to describe adjointShapeOptimizationFoam and how modifications can be made
to the code to solve the topology optimization problem for different cost functions. In order to be
able to validate (to some extent) the results, descriptions of how to calculate the cost function and
sensitivity of each cell will be presented.

A short description of the current implementation will be included, to motivate the necessary mod-
ifications. Describing the code of adjointShapeOptimizationFoam also gives an opportunity to
identify possible problems with the solver.

Othmer, C. & de Villiers, E. & Weller, H.G. (2007). Implementation of a continuous adjoint for
topology optimization of ducted flows. American Institute of Aeronautics and Astronautics, ATAA-
3947.

Othmer, C. (2008). A continuous adjoint formulation for the computation of topological and
surface sensitives of ducted flows. Int. J. Numer. Meth. Fluid, 58, 861-877.

Chapter 1

Theory

A general optimization problem includes an objective function to be minimized or maximized subject
to different constraints. In the case of a general cost function, in our case depending on flow variables
v and p and the design variable «, subject to the constraint of fulfilling the incompressible, steady
state Navier-Stokes (NS) equations the problem can be written as

minimize J = J(v,p, @)
such that (v-V)v+Vp—V - (2vD(v))+av =0, (1.1)
V-v=0.

The above equation introduces the porosity as a sink term using Darcy’s law. Cells contributing
negatively to the cost function can therefore be punished by increasing the porosity. The kine-
matic viscousity is defined as the sum of molecular and turbulent viscousity and the strain rate
tensor is denoted D(v) = 1 (Vv + (Vv)T). Le.the constraints are the Reynolds averaged NS using
the Boussinesq assumption to model the Reynold stresses. Introducing Lagrange multipliers the
Lagrangian relaxation of the problem reads

minimize L :=J+ /(u,q)RdQ. (1.2)
Q

In eq. 1.2 Q refers to the flow domain and R to the incompressible RANS and continuity equation
(i.e. the constraints in eq. 1.1), while the adjoint velocity and pressure, (u,q), are introduced as
Lagrange multipliers. Hence the notation (u,¢)R denotes the fact that each of the constraint is
multiplied with a Lagrange multiplier and the contribution is added together and summed over the
total domain. To arrive at the desired sensitivity for the Lagrange relaxation with respect to design
variables the total variation of L, eq. 1.3, is studied and the adjoint velocity and pressure chosen in
such a way that the variation with respect to the other variables, (v, p), vanishes, according to

0L = 0oL +0vL +90,L, (1.3)
d0vL+6,L =0. (1.4)

Eq. 1.3 and 1.4 give the expression for the sensitivity of the cost function with respect to the porosity

in cell 7 as
oL B

aai
where V; is the volume of cell i. After some derivation, the condition in eq. 1.4 gives the adjoint
Navier-Stokes equations eq. 1.6-1.7. It should be noted that even though the terminology implies a
physical meaning of the adjoint variables they should not be interpreted as a velocity or a pressure
in the physical sense. The names are rather used to emphasize the similarities with the primal

u; - v; Vi, (1.5)

1.1. BOUNDARY CONDITIONS CHAPTER 1. THEORY

variables, suggesting that a similar solution procedure can be applied.

—2D(u)v = =V¢+ V- (2vD(u)) — au — %i‘?, (1.6)
dJa
=, 1.
V-u op (1.7)

For cost functions which do not contain any contribution from the flow domain, but only from
the boundaries, the term including Jg, where g denote the volume part of the domain excluding
the boundaries, is equal to zero and hence adjoint momentum, eq. 1.6, and pressure, eq. 1.7, do
not change when varying between cost functions of this type. The variations enter the solver only
through the boundary conditions, which can be derived from eq. 1.8 and 1.9, using r to denote the
boundary of the domain.

/(n(u~v)+u(V~n)+2un~D(u)—qn+B;VF>6vdF

—/21/n -D(6v)-udl =0, (1.8)
r

/(u-n+ 8;;) opdI’ = 0. (1.9)

r

The above equation stem from the same conditions as eq. 1.6 and 1.7, hence a decomposition of the
expressions has been done (including integration by parts) into a contribution from the domain and
a contribution from the boundaries of the domain, resulting in eq. 1.6-1.9.

The primal equations together with the adjoint, eq. 1.6-1.9, is the general form of the optimization
problem. The derivation of the adjoint equations from the condition stated in eq. 1.4 includes,
apart from a few rows of derivations, also an approximation known as “frozen turbulence”. This
approximation is used when neglecting the variation of v when the adjoint equations are derived,
which is correct for laminar, but not turbulent regions. Neglactations done in the derivations of the
equations together with the frozen turbulence approximation are the main reasons for the inaccura-
cies when solving the adjoint equations. For more information about the derivations, validity of the
implementation and inaccuracies the reader is reffered to [2].

1.1 Boundary conditions

In the following sections boundary conditions for the adjoint quantities for two different cost func-
tions will be presented. The primal boundary conditions can be seen in Table 1.1, note that the
derivations in the following sections are only valid for those conditions. Since the scope of this
project is to cover the implementation of the conditions, the derivation of the boundary conditions
will not be included. Only the final expressions of different cost functions will be presented, eq.
1.10-1.12 and 1.13-1.14, calculated from the general expressions, eq. 1.8 and 1.9, with derivations
valid for ducted flows.

Wall Inlet Outlet
v No-slip Prescribed value | Zero gradient
p | Zero gradient Zero gradient p=20

Table 1.1: Boundary conditions for the primal quantities v and p.

1.1. BOUNDARY CONDITIONS CHAPTER 1. THEORY

Wall and inlet boundary conditions

u =0, (1.10)
aJ,
Up = — =2, (1.11)
dp
n-Vg=0. (1.12)
Outlet boundary conditions
0J;
q:u~v+unvn+1/(n'V)un+a—F, (1.13)
Uy,
aJ;
0=wvpuy 4 v(n- V)uy + ——, (1.14)
6Vt
where the derivatives % and % are the tangential and normal components of % respectively.

1.1.1 Power dissipation
The cost function of dissipated power is defined as
1
J=— /(p + §v2)v -ndl. (1.15)
r

This is a cost function without any volumetric contribution, Jo = 0 and Jr = (p + %1}2)V -n. The
boundary conditions for the wall and inlet reduces to

U = O,
0 t wall

w, - abwad (1.16)
Un, at inlet,

n-Vg =0.

The outlet boundary conditions for the adjoint velocity and pressure are defined as

{q =u-v+u,v, +v(n-Vu, — 10% — 02, (1.17)

0 =v,(u—vy)+vn-Vu.

Where the pressure term has not been forgotten, but simply left out because of the fact that the
boundary condition for the primal pressure is 0 on the outlet patch.

1.1.2 Flow uniformity at the outlet

The cost function describing uniformity at the outlet is defined below.

J = / %(V — v dr,. (1.18)
T,

In eq. 1.18, ¢ is a constant to maintain unit consistiency while v¢ is the prescribed, wanted velocity
in the outlet plane. As for the case with dissipated power, the volumetric contribution to the cost
function is zero, however in this case the inlet boundary does not contribute, only the outlet T',.
The boundary conditions reduces to
u =0,
{ (1.19)

n-Vqg =0,
at the wall and inlet and

{q :u'V+unvn+V(n'v)u”+c(vn_vg)’ (120)

0 =wv,u+v(n-V)u +clvy —vi),
for the outlet.

1.2. STEEPEST DESCENT ALGORITHM CHAPTER 1. THEORY

1.2 Steepest descent algorithm

Steepest descent is a gradient based algorithm, which for a linear system uses a search direction
defined by

Pr = —Vf(Xx), (1.21)

where x;, denotes the current location at iteration step k£ and f is a general function to be minimized,
continuous in some neighbourhood around xj, € R™. An arbitary small change of the valiables, xy,
in this direction obviously gives a reduction of the general cost function, f.[4]
In our case with the sensitivity defined in eq. 1.5, a steepest descent algorithm can be applied to
update the porosity according to

Qp41 = Oy — Uy - vﬂ&é (122)

In the above equation a,,41 and «a,, are the new and old porosity values respectively, § and V; is the
step-length and the volume of the cell considered respectively. The implementation of the steepest
descent in adjointShapeOptimizationFoam also uses an underrelaxation factor to improve stability.
The final form of the implementation can be written as

Qnt1 = ap (1 —7) +ymin (max ((a, — w; - v;V;6),0), tmaz) » (1.23)

where v is the relaxation factor and ;4. is a user defined upper limit to the porosity. Note the
use of the min and max functions, limiting the porosity so that it never becomes negative and
never greater than au,.,. However au,q., also limit each step length, reducing the impact of a large,
negative value of the product u; - v;V;.

Chapter 2

adjointShapeOptimizationFoam

To be able to compute the sensitives by the use of an adjoint method it has been showed in the
theory section that one has to solve two system of governing equations, the primal and the adjoint.
The two include similar terms which enables the use of similar type of algorithms to solve the system.
The solver implements the “one-shot” approach to solve the primal and adjoint systems to compute
the sensitivities using the only partially converged quantities. The adjoint system is solved similarily
to the primal, with a SIMPLE-type algorithm to couple the pressure and velocity. Below in figure
2.1 the solution procedure is graphically presented.

Solve the
primal system

(v,p)

|
3 Update the Solve the
l porosity adjoint system

Steepest descent (u,9)

|
|
|
|
|
|
|
:
f‘Frozen tubulence”
|
|
|
|
|
|
|
|
l
|
Convergence |
|
|

assessment Converged
S SR (B
End time or

convergence condition

Figure 2.1: Block scheme of the solution procedure used in adjointShapeOptimizationFoam.

2.1 The solver

The adjointShapeOptimizationFoam solver is located in

$FOAM_SOLVERS/incompressible/adjointShapeOptimizationFoam, which has a directory struc-
ture which can be seen in figure 2.2. It is based on simpleFoam and the differences can easily be
identified by studying the uppermost levels of the code in adjointShapeOptimizationFoam.C. In
the following sections the code will be examined in order to understand the implementation of the

69
70
71
72
73
74
75
76

2.1. THE SOLVER CHAPTER 2. ADJOINTSHAPEOPTIMIZATIONFOAM

theory explained in previous sections.

adjointShapeOptimizationFoam/

adjointContinuityErrs.H

adjointOutletPressure/

f::adjointOutletPressureFvPatchScalarField.C
adjointOutletPressureFvPatchScalarField.H

adjointOutletVelocity/
adjointOutletVelocityFvPatchVectorField.C
adjointOutletVelocityFvPatchVectorField.H

adjointShapeOptimizationFoam.C

createFields.H

createPhia.H

initAdjointContinuityErrs.H

Make/

t options
files

Figure 2.2: Directory structure for adjointShapeOptimizationFoam.

2.1.1 adjointShapeOptimizationFoam.C

The solver is initialized by including a number of files:

int main(int argc, char xargv][])
{
#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
#include "createFields.H"
#include "initContinuityErrs.H"
#include "initAdjointContinuityErrs.H"

Listing 2.1: file adjointShapeOptimizationFoam.C

Those header files are included from src/0OpenF0AM/1nInclude/ and src/finiteVolume/InInclude/
except for createFields.H and initAdjointContinuityErrs.H which are located in the
adjointShapeOptimizationFoam/ directory.

The first header file constructs an arglist object, args, of the arguments provided to the main
function. The case path and root path are checked together with the argument list. Additional
information about the case, e.g. number of processors and processor directories, is stored.
createTime.H and createMesh.H construct an object of the class Time, runTime, and one of the
class fvMesh, mesh, respectively. The runTime object contains time information, all the necessary
counters and values needed from the control dictionary, while the object mesh contains information
about the finite volume mesh, e.g. position of nodes, face areas and cell volumes, but also informa-
tion about interpolation schemes to be used.

Line 71 — 75 are included similarily in most solvers. As for createFields.H, it initializes the
variables used by adjointShapeOptimizationFoam. This includes the primal and adjoint variables,
as well as viscosity and other dimensioned scalars and the turbulence model. A few of the initial-
izations are studied in the following section. As for initAdjointContinuityErrs.H it, similarily to
its primal equivalent, initializes the cumulative adjoint continuity error by setting it to zero.

2.1. THE SOLVER CHAPTER 2. ADJOINTSHAPEOPTIMIZATIONFOAM

The start of the main loop of the solver is included below in Listing 2.2.

83 Info<< "\nStarting time loop\n" << endl;

84

85 while (simple.loop())

86 {

87 Info<< "Time = " << runTime.timeName() << nl << endl;
88

89 laminarTransport.lookup ("lambda") >> lambda;
90

91 //alpha +=

92 // mesh.relaxationFactor (" alpha”)

93 // *(lambdaxmax(Ua & U, zeroSensitivity) — alpha);
94 alpha +=

95 mesh . fieldRelaxationFactor ("alpha")
96 *(min (max(alpha + lambdax(Ua & U), zeroAlpha), alphaMax) — alpha);
97

98 zeroCells (alpha, inletCells);

99 //zeroCells (alpha, outletCells);

100

101 // Pressure—velocity SIMPLE corrector

102 {

103 // Momentum predictor

104

105 tmp<fvVectorMatrix> UEqn

106 (

107 fvm:: div (phi, U)

108 + turbulence—>divDevReff(U)

109 + fvm::Sp(alpha, U)

110 K

111

112 UEqn (). relax ();

113

114 solve (UEqn() == —fvc::grad(p));

Listing 2.2: file adjointShapeOptimizationFoam.C

At lines 94 — 96 the porosity field is updated using a steepest descent algorithm. The relaxation
factor is user defined and found using the fieldRelaxationFactor() function, which reads the
relaxation factor from the fvSolution dictionary. Studying the code and comparing it to eq. 1.23
it can be seen that the scalar “lambda” which is defined in createFields.H as

90 dimensionedScalar lambda(laminarTransport.lookup ("lambda"));

Listing 2.3: file createFields.H

is the cell volume times the step length. Note that it is a user supplied quantity given in the case
directory constant/transportProperties and finding the correct step size is not only important
for convergence, but also an optimization problem of its own. Also in a non-uniform mesh the step
size will be different in the cells because of the varying volume. The max function makes sure «
never becomes negative, while the min function puts an upper limit to the porosity. However the
sign on line 96, where the new value of alpha is defined, seems to be incorrect. In order to implement
the steepest descent method defined in eq. 1.23 it should be changed to a minus sign, resulting in

96 *(min(max(alpha — lambdax*(Ua & U), zeroAlpha), alphaMax) — alpha);

2.1. THE SOLVER CHAPTER 2. ADJOINTSHAPEOPTIMIZATIONFOAM

On line 98 the porosity at the inlet cells are put to zero with the function zeroCells defined before
the main function in adjointShapeOptimizationFoam.C. It is a templated functions enabling the
use of more than one type of variable, e.g. scalar, vector or tensor, which sets the value of the
provided variable to zero in the region specified.

As for the momentum predictor lines 105— in the above code, the different terms of the constraints
in eq. 1.1 can easily be identified. As for line 108 the term turbulence is a pointer to the RASModel
used constructed in createFields.H. When using the standard k-epsilon model the divDevReff ()
function is defined in

OpenFOAM/0OpenF0AM-2.2.x/src/turbulenceModels/incompressible/RAS/kEpsilon/kEpsilon.C

as
185 tmp<fvVectorMatrix> kEpsilon::divDevReff(volVectorField& U) const
186 {

187 return

188 (

189 — fvm::laplacian (nuEff(), U

190 — fve::div(nuEff()xdev(T(fve::grad(U))))

191)

192 1}

Listing 2.4: file kEpsilon.C

This can be identified as the term 2vD(v) in eq. 1.1, with an additional term
1 T
V. gyefftr (Vu)"

from the dev() member function, which creates the deviatoric part of the second order tensor argu-
ment according to dev(A) = A — 1/3(trA)I. The term should tend to zero for incompressible flow
due to continuity.

The sink term due to porosity is treated like other source terms and is implemented implicitly using
fvm: :Sp(alpha,U) on line 109.

The primal system is then solved by using the value of the velocity from the momentum predictor
to correct the pressure and then correcting the velocity with the new value of p in a momentum
corrector, in a SIMPLE-type algorithm. This concludes the solution to the primal system this iter-
ation. The ajoint system is solved in a manner very similar to the primal, using the same viscosity
(frozen turbulence) and calculated values of the primal quantities needed:

154 // Adjoint Pressure—velocity SIMPLE corrector

155 {

156 // Adjoint Momentum predictor

157

158 volVectorField adjointTransposeConvection ((fve::grad(Ua) & U));
159 //volVectorField adjointTransposeConvection

160 //(

161 // fve::reconstruct

162 /7 (

163 // mesh . magSf()*(fve::snGrad(Ua) & fve::interpolate (U))

164 //)
165 /]);

166

167 zeroCells (adjointTransposeConvection, inletCells);
168

169 tmp<fvVectorMatrix> UaEqn

170
171
172
173
174
175
176
177
178
179

37
38
39
40
41
42
43
44
45
46
47
48
49

65
66
67

2.1. THE SOLVER CHAPTER 2. ADJOINTSHAPEOPTIMIZATIONFOAM

(

fvm:: div(—phi, Ua)

— adjointTransposeConvection
+ turbulence—>divDevReff (Ua)
+ fvmm::Sp(alpha, Ua)

);

UaEqn (). relax ();

solve (UaEqn() = —fvc::grad(pa));

Listing 2.5: file adjointShapeOptimizationFoam.C

The adjoint momentum predictor can be seen to be very similar to the primal. The only differences
are a few signs and an additional term “adjointTransposeConvection”, which can be identified by
comparing the adjoint and primal incompressible, steady-state Navier-Stokes equations as the first
term on the RHS in the below equation

—2D(u)v=-Vu-v—(v-V)u (2.1)

The second term in the RHS of eq. 2.1 is calculated on line 171.

On line 167 the adjointTransposeConvection term is set to zero at the inlet cells, which could imply
stability concerns of the term. No dependence on the cost function is included which indicates a
cost function without volumetric contributions.

2.1.2 createFields.H

As mentioned in the previous section the createFields.H file is where the variables used by the
solver are initiated. The write and read options for the adjoint pressure and velocity are set up using
the I0object class in a similar way to the primal quantities.

Info<< "Reading field pa\n" << endl;
volScalarField pa

IOobject
(
"pa",
runTime. timeName () ,
mesh ,
IOobject : : MUSTREAD,
IOobject : : AUTO_WRITE
)

mesh

Listing 2.6: file createFields.H

The code makes the solver write the data to the file “pa” in a directory named after the timestep.
The same is done for the adjoint velocity, the only difference being that the field is a volVectorField
Ua. Important to note is that the initial values of the quantity, including boundary conditions and
values of the boundary cells are read at this point.

#include "createPhia.H"

10

68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

49

2.1. THE SOLVER CHAPTER 2. ADJOINTSHAPEOPTIMIZATIONFOAM

label paRefCell = 0;

scalar paRefValue 0.0;
setRefCell
(
pa,
mesh . solutionDict ().subDict ("SIMPLE"),
paRefCell ,
paRefValue

E

singlePhaseTransportModel laminarTransport (U, phi);

autoPtr<incompressible : : RASModel> turbulence

(
E

incompressible : : RASModel : : New (U, phi, laminarTransport)

dimensionedScalar zeroSensitivity ("0", dimVelocityxdimVelocity, 0.0);
dimensionedScalar zeroAlpha("0", dimless/dimTime, 0.0);

dimensionedScalar lambda(laminarTransport.lookup ("lambda"));
dimensionedScalar alphaMax(laminarTransport.lookup ("alphaMax"));

const labelList& inletCells = mesh.boundary ()["inlet"]. faceCells ();
//const labelList& outletCells = mesh.boundary ()[” outlet”]. faceCells ();

volScalarField alpha

(
IOobject

(
lla-]‘l)ha-ﬂ7
runTime. timeName () ,
mesh ,
I0object : : READ_IF_PRESENT,
IO0object : : AUTO_WRITE
)
lambdaxmax(Ua & U, zeroSensitivity)
)
zeroCells (alpha, inletCells);
//zeroCells (alpha, outletCells);

Listing 2.7: file createFields.H

The rest of the file, Listing 2.7, includes definitions of a number of scalars used in the solver as well
as the autoPtr turbulence to the turbulence model used and reference cells / values for the adjoint
and primal pressure, user defined in the fvSolution file. Line 65 where the createPhia.H is included
initiates the surfaceScalarField phia. This is the face volume flux defined in createPhia.H as

linearInterpolate (Ua) & mesh. Sf()

Listing 2.8: file createPhia.H

which interpolates the value of Ua at the face from the neighbouring nodes and takes the inner
product with the face area vector. The scalars are either defined by the user and looked up in the

11

2.1. THE SOLVER CHAPTER 2. ADJOINTSHAPEOPTIMIZATIONFOAM

case dictionaries such as alphaMax on line 91. Other variables are defined in the file itself, such as
the reference inletCells to the face nodes of the inlet patch according to the code on line 93.

The file also includes an initiation of the porosity field, line 96 — 107. It can be seen to be slightly
different than for the primal and adjoint variables. The read option READ_IF _PRESENT makes it
read stored values if they are present, enabling the use of an initialization of alpha. However if an
initialization of the adjoint and primal velocities is used when running a case, i.e. fields of values
e.g. from another simulation are provided as a better initial guess (which should be considered for
a faster, smoother convergence, see section 4), the sign can be seen to be incorrect on line 106.

2.1.3 Boundary conditions

The current implementation of the adjoint sovler optimizes for total pressure loss rather than power
dissipated or flow uniformity at the outlet which the paper it is based on describes. Hence the
boundary conditions will not be equal to those given in the theory section. The below sections try
to describe how the boundary conditions are implemented to easier modify those in forthcoming
sections, chapter 3. The descriptions will be focused on how the member function updateCoeffs()
updates the value rather than how the constructor works. Both implementations use an explicit
implementation to set the value of the adjoint variables on the outlet patch. It should be noted that
the current implementation only has additional implemented boundary condition for the outlet and
not the inlet. This is because of the fact that the boundary conditions for the inlet patch can often
be set using existing boundary conditions, not unique for the adjoint method.

adjointOutletPressureFvPatchScalarField.C

The updateCoeffs() member function for the adjoint pressure can be seen below:

8 // % % % % % % % % x x % % % % % Member Functions % % % % % % % % % % % % % //
87
88 wvoid Foam:: adjointOutletPressureFvPatchScalarField :: updateCoeffs ()

89 {

90 if (updated())

91 {

92 return;

93 }

94

95 const fvsPatchField<scalar>& phip =

96 patch ().lookupPatchField<surfaceScalarField , scalar >("phi");
97

98 const fvsPatchField<scalar>& phiap =

99 patch ().lookupPatchField<surfaceScalarField , scalar >("phia");
100

101 const fvPatchField<vector>& Up =

102 patch ().lookupPatchField<volVectorField , vector>("U");

103

104 const fvPatchField<vector>& Uap =

105 patch ().lookupPatchField<volVectorField , vector>("Ua");

106

107 operator==((phiap/patch (). magSf() — 1.0)*phip/patch().magSf() + (Up & Uap));
108

109 fixedValueFvPatchScalarField :: updateCoeffs ();

110 }

Listing 2.9: file adjointOutletPressureFvPatchScalarField.C

12

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

2.1. THE SOLVER CHAPTER 2. ADJOINTSHAPEOPTIMIZATIONFOAM

Line 95-105 define the needed fvsPatchFields and fvPatchFields of variables by looking them up
with the lookupPatchField function. The operator defined on line 107 then assigns a value to the
adjoint pressure, pa (¢q), using an equation which can be identified as

q= (up — v, +u-v, (2.2)

using the definition of patch() .magSf as the magnitude of the face area vector of the patch in
question, i.e. the area of the face. According to the literature the equation which should be solved
to assign the adjoint pressure a value at the outlet is given by eq. 1.13. It is clear from eq. 2.2 that
the current implementation uses expressions for boundary conditions different than those given in
eq. 1.17 or 1.20. However, there is not much information about the actual implementation in the
article so there might be approximations done that are not mentioned in the literature, complicating
the task of identifying for which cost function the current implementation is suitable.

adjointOutletVelocityFvPatchVectorField.C

The updateCoeffs() member function for the adjoint velocity can be seen below:

/] % % k% k% x x % *k k x x % *x x x Member Functions x % # % % % % % % % x % % [/

// Update the coefficients associated with the patch field
void Foam::adjointOutletVelocityFvPatchVectorField :: updateCoeffs ()
{

if (updated())

{

return;

}

const fvsPatchField<scalar>& phiap =
patch ().lookupPatchField<surfaceScalarField , scalar >("phia");

const fvPatchField<vector>& Up =
patch ().lookupPatchField<volVectorField , vector >("U");

scalarField Un(mag(patch ().nf() & Up));
vectorField UtHat ((Up — patch().nf()*Un)/(Un + SMALL));

vectorField Uan(patch ().nf()*(patch().nf() & patchInternalField ()));

vectorField :: operator=(phiap*patch (). Sf()/sqr(patch (). magSf()) + UtHat);

//vectorField :: operator=(Uan + UtHat);

fixedValueFvPatchVectorField :: updateCoeffs ();
}

Listing 2.10: file adjointOutletVelocityFvPatchVectorField.C

The implementation for the adjoint velocity boundary condition is similar to the one for pressure.
According to the litterature eq. 1.14 should be used to find the tangential component of the velocity,
then the total adjoint velocity can be evaluated as u = u; + u,. The code seen in Listing 2.10 does
this on line 104. The mathematical expression for UtHat can be seen to be

Vp — Vpn

_ 2.3
Ot + SMALL’ (2:3)

where the indices ,, , and ;denote the current, center node and its normal or tangential component
respectively and SMALL is added in the denominator to ensure it is always non-zero. As already

13

2.1. THE SOLVER CHAPTER 2. ADJOINTSHAPEOPTIMIZATIONFOAM

mentioned the cost function for which the current boundary conditions are suitable is not easily
identified by the expressions given by eq. 2.2 and 2.3. Furthermore the unused variable Uan, defined
on line 102, serves as another confusion factor. patchInternalField() can be used to access
quantities from the neighbouring nodes of the patch, generating a tmp<Field<Type>>. The tmp
class enables the fields to be returned from the function without being copied, hence it is suitable
when handling demanding variables, memory wise. Hence the function will be used to determine
the adjoint velocity in the neighbouring node when modifying the solver. The neighbouring node’s
velocity is needed if the evaluation of the term

v(n-V)u,

is approximated as the difference between the velocities divided by the distance between the patch
and its neighbouring node. This is the approximation which will be used when modifying the
boundary conditions in section 3.3.

14

Chapter 3

Modify the solver

In this chapter detailed instructions on how to implement your own modifications to the solver are
included. Only cost functions without volumetric contributions are considered, which reduces the
problem of changing cost function to designing new boundary conditions, according to the theory
explained in chapter 1. The same solver will therefore be applied and which cost function that is to
be considered is defined when choosing boundary conditions in the case settings.

3.1 Copy and rename the original solver

Copy the original solver to a directory of choice, tentatively:

cd $WM_PROJECT_DIR
cp -r --parents applications/solvers/incompressible/adjointShapeOptimizationFoam \
$WM_PROJECT_USER_DIR

Rename the solver to name of choice, e.g. myAdjointShapeOptimizationFoam

cd $WM_PROJECT_USER_DIR/applications/solvers/incompressible/

mv adjointShapeOptimizationFoam myAdjointShapeOptimizationFoam

cd myAdjointShapeOptimizationFoam

mv adjointShapeOptimizationFoam.C myAdjointShapeOptimizationFoam.C

Rename the executable and change the location in Make/files:

sed -i s/FOAM_APPBIN/FOAM_USER_APPBIN/g Make/files
sed -i s/adjointShapeOptimizationFoam/myAdjointShapeOptimizationFoam/g Make/files

Clean the previous compilation and recompile with the command wclean and wmake respecitvely.
If everything worked as intended the command which myAdjointShapeOptimizationFoam should
return the path to the copied solver.

3.2 Changing the sign in the implementation of the steepest
descent algorithm

The sign in the steepest descent algorithm seems to be incorrect, see section 2.1.1. In order for
the coming implementations to work correctly it should be changed by replacing the plus sign with
a minus sign in adjointShapeOptimizationFoam.C according to Listing 2.2 and 2.1.1, in section
2.1.1. Note that the original boundary conditions do not work with this modification, but only the
new ones introduced below, section 3.3.

15

3.3. CHANGING THE COST FUNCTION CHAPTER 3. MODIFY THE SOLVER

3.3 Changing the cost function

As mentioned in Section 2.1.3 the current boundary conditions are for the cost function describing
total pressure loss rather than for power dissipation or flow uniformity at the outlet described in [1].
Below descriptions of how to include additional boundary conditions suited for power dissipation
and flow uniformity will be shown.

3.3.1 Flow uniformity at the outlet

Start by moving into the copied directory of the copied solver and copy the original boundary con-
ditions.

cd $WM_PROJECT_USER.DIR/solvers/incompressible/myAdjointOptimizationFoam
cp -r adjointOutletVelocity/ adjointOutletVelocityUni/
cp -r adjointOutletPressure/ adjointOutletPressureUni/

The next step is to rename the boundary conditions. The easiest way to do this is to use the
sed command as

cd adjointOutletPressureUni

sed s/adjointOutletPressure/adjointOutletPressureUni/g \
adjointOutletPressureFvPatchScalarField.C > adjointOutletPressureUniFvPatchScalarField.C
sed s/adjointOutletPressure/adjointOutletPressurelni/g \
adjointOutletPressureFvPatchScalarField.H > adjointOutletPressureUniFvPatchScalarField.H
cd ../adjointOutletVelocityUni

sed s/adjointOutletVelocity/adjointOutletVelocityUni/g \
adjointOutletVelocityFvPatchVectorField.C > adjointOutletVelocityUniFvPatchVectorField.C
sed s/adjointOutletVelocity/adjointOutletVelocityUni/g \
adjointOutletVelocityFvPatchVectorField.H > adjointOutletVelocityUniFvPatchVectorField.H
cd ..

Remove the old files and move back to the folder where the Make directory is situated:

rm adjointOutletPressureUni/adjointOutletPressureFvPatchScalarField.*
rm adjointQOutletVelocityUni/adjointOutletVelocityFvPatchVectorField.*

Now the new boundary conditions need be included when compiling, by editing Make/files. Or
simply open Make/files by a text editor of choice and add the line
adjointOutletVelocityUni/adjointOutletVelocityUniFvPatchVectorField.C and
adjointOutletPressureUni/adjointOutletPressureUniFvPatchScalarField.C by hand, some-
where before the EXE = -line.

sed -i "s/myAdjointShapeOptimizationFoam.C/myAdjointShapeOptimizationFoam.C\n \
adjointOutletVelocityUni\/adjointOutletVelocityUniFvPatchVectorField.C\n \
adjointOutletPressureUni\/adjointOutletPressureUniFvPatchScalarField.C/g" Make/files

Before including descriptions of how the boundary conditions are implemented the needed equa-
tions are presented. Starting from eq. 1.20 the boundary calculations needed can be seen below

v
q=1p-Vp+UpnUpn + x (Up.n — Uneighn) + c(Vpn — v,‘ip), (3.1)
d
u, = AUneight = C(Vf’t ~Voi), (3.2)
Upn T &

16

3.3. CHANGING THE COST FUNCTION CHAPTER 3. MODIFY THE SOLVER

Note that the term v(n - V)u,, has been approximated as the difference between the velocity in the
node at the patch in question and its neighbouring node, in the domain, divided by the distance
between them, i.e.
Uyt — Upei
v(n- V)u, ~ p—Rt— neioht (3.3)

A

where A is the distance between the patch and its neighbouring node one arrive at the following
expressions for the pressure and velocity boundary conditions. In eq. 3.1-3.2; , and ,eign denote
the node at the patch and its neighbouring node respectively and ; and ,, denote the tangential
and normal component respectively.

Adjoint pressure

Starting with the boundary condition for the adjoint pressure; open
adjointOutletPressureUni/adjointOutletPressureUniFvPatchScalarField.C with a text edi-
tor of choice. Add #include "RASModel.H" in the header, then scroll down to the “member func-
tion” section and follow the instructions below to modify the updateCoeffs() function.

The flux fields will not be used, hence delete the unused fields phip and phiap by removing the
following lines.

const fvsPatchField<scalar>& phip =
patch ().lookupPatchField<surfaceScalarField , scalar >("phi");

const fvsPatchField<scalar>& phiap =
patch ().lookupPatchField<surfaceScalarField , scalar >("phia");

Listing 3.1: Remove

To calculate the magnitude of the normal components of the primal and adjoint velocities, use
the patch() .nf () member function to find the face normal vector. The magnitude of the normal
component is then calculated taking the inner product of the normal with the velocities and define
the scalar fields by adding the definitions seen below.

scalarField Up.n = Up & patch().nf(); //Primal

scalarField Uap.n = Uap & patch ().nf();//Adjoint

The variables needed to compute the first two terms on the RHS of eq. 3.1 are now defined. As for the
turbulent viscosity the turbulence model is a I0object and can be found using the lookupObject ()
function. The effective viscosity can then be found using a member function of the turbulence
model’s class according to

const incompressible :: RASModel& rasModel =
db ().lookupObject<incompressible : : RASModel>("RASProperties");

scalarField nueff = rasModel.nuEff ()().boundaryField ()[patch ().index ()];

As for the distance between the nodes, A, the easiest way to define it is using deltaCoeffs, which
returns the inverse of the distance between nodes when used as

const scalarField& deltainv = patch ().deltaCoeffs(); // distance” (—1)

The magnitude of the normal component of the adjoint velocity in the neighbouring can be found
using patchInternalField() which is mentioned in the implementation of the adjoint velocity
outlet boundary condition, even though never actually used (see Listing 2.10).

scalarField Uaneigh.n = (Uap.patchInternalField () & patch().nf());

17

3.3. CHANGING THE COST FUNCTION CHAPTER 3. MODIFY THE SOLVER

The remaining variable is the user defined velocity in the outlet plane. In many cases it would be
preferrable to define it in a dictionary when defining settings for the case. One way to do this is to
include another volVectorField in createFields.H similarily to the adjoint and primal velocities.
To do this a few additions to createFields.H is needed. Open createFields.H using a text editor
of choice and add the following lines at the end of the file.

dictionary optFunc =
mesh . solutionDict ().subDict ("objectiveFunctionDict");

vector Udlookup =
optFunc.lookupOrDefault<vector >("Uduserdefnodim", vector (1,0,0));

volVectorField Ud
(

IOobject
(
|lUdll ,
runTime. timeName (),
mesh ,
IOobject : : READ_IF PRESENT,
IOobject : : AUTO_WRITE
)
mesh ,

Udlookup
)

Descriptions of how this is added in the fvSolution dictionary is included in section 4.1.3. But
reading the code one can see that it should be in a sub-dictionary called “objectiveFunctionDict”
and the name should be “Uduserdefnodim”.

Save the changes before returning to
adjointOutletPressureUni/adjointOutletPressureUniFvPatchScalarField.C. The magnitude
of the normal component of the user defined vector can now be found by adding the following.

const fvPatchField<vector>& Udp =
patch ().lookupPatchField<volVectorField , vector>("Ud");

scalarField Udpn = (Udp & patch ().nf());

Every variable needed to define the operator and calculate the value of the adjoint pressure is now
present and the operator is readily defined as

operator =— ((Uap&Up) + (Up-nxUap.n) +
nueffxdeltainv*(Uap.n — Uaneigh.n) + (Up.n—Udpn));

Note that the constant c is equal to 1 and the units seem to coincide without including an additional
dimensioned scalar, hence it has been left out.

Adjoint velocity

The boundary condition for the adjoint velocity is done similarily; open
adjointOutletVelocityUni/adjointOutletVelocityUniFvPatchVectorField.C with a text edi-
tor of choice. Add #include "RASModel.H" in the header, then scroll down to the “member func-
tion” section and follow the instructions below to modify the updateCoeffs() function.

Many of the steps are similar to steps done in the pressure condition and hence the instructions for
those will only be “Include” or “Remove” without any arguments or description of the implementa-
tion.

Remove the adjoint flux.

18

3.3. CHANGING THE COST FUNCTION CHAPTER 3. MODIFY THE SOLVER

const fvsPatchField<scalar>& phiap =
patch ().lookupPatchField<surfaceScalarField , scalar >("phia");

Listing 3.2: Remove

Remove also the scalar and vector fields defined in the default code, namely Un, Uthat and Uan.
They will be defined in a way similar to what was done for the pressure condition.

scalarField Un(mag(patch ().nf() & Up));
vectorField UtHat((Up — patch().nf()*Un)/(Un + SMALL));

vectorField Uan(patch ().nf()*(patch().nf() & patchInternalField ()));

Listing 3.3: Remove

Include the adjoint velocity.

const fvPatchField<vector>& Uap =
patch ().lookupPatchField<volVectorField ,vector >("Ua");

Include the turbulence model, define the turbulent viscosity and the inverse distance between the
nodes.

const incompressible :: RASModel& rasModel =
db ().lookupObject<incompressible : : RASModel>("RASProperties");

scalarField nueff = rasModel.nuEff () ().boundaryField ()[patch ().index ()];

const scalarField& deltainv = patch().deltaCoeffs(); // dist " (—1)

Include the user defined velocity as before, however the tangential component is now needed rather

than the magnitude of the normal component. The normal component can be calculated by multi-

plying v by n and then tangential part by subtraction v = v¢ — vd.

const fvPatchField<vector>& Udp =
patch ().lookupPatchField<volVectorField ,vector >("Ud");

vectorField Udp.n = (Udp & patch ().nf())*patch().nf();

vectorField Udp_t = Udp — Udp.n;

Next compute the normal and tangential component of the primal velocity, using the same method
as for the user defined velocity.

//Primal
vectorField Up.n = (Up & patch().nf())*patch().nf(); //Normal

scalarField Up.ns = (Up & patch (). nf()); //Mag. of normal

vectorField Up_t = Up — Up.n; //Tangential

Include the adjoint velocity in the neighbouring node and its two components, as vector fields.

vectorField Uaneigh = Uap.patchInternalField ();
vectorField Uaneigh.n = (Uaneigh & patch ().nf())*patch().nf(); //Normal

vectorField Uaneigh_t = Uaneigh — Uaneigh.n; //Tangential

19

3.3. CHANGING THE COST FUNCTION CHAPTER 3. MODIFY THE SOLVER

Now every term needed to calculate the tangential part of the adjoint velocity, see eq. 3.2, have
been defined. Since the definition of the operator == should be an expression for the total adjoint
velocity one should also include the normal component in some way. The convinient way to do this
is to take the old value of the normal component and add it to the updated value of the tangential
component. According to

vectorField Uap.n = (Uap & patch ().nf())*patch().nf(); //Normal comp.

vectorField Uap_t = (—(Up-t—Udp-t) + nueffsxdeltainv«Uaneigh_t) /
(Up_nst+nueffxdeltainv);

operator==(Uap_t+Uap_n);

Note that the above operator is supposed to replace the existing one.

3.3.2 Power dissipation

Start by moving into the copied directory of the copied solver and copy the original boundary con-
ditions.

cd $WM_PROJECT_USER_DIR/solvers/incompressible/myAdjointOptimizationFoam
cp -r adjointOutletVelocity/ adjointOutletVelocityPower/
cp -r adjointOutletPressure/ adjointOutletPressurePower/

The next step is to rename the boundary conditions. The easiest way to do this is to use the
sed command as

cd adjointOutletPressurePower

sed s/adjointOutletPressure/adjointOutletPressurePower/g \
adjointOutletPressureFvPatchScalarField.C > adjointOutletPressurePowerFvPatchScalarField.C
sed s/adjointOutletPressure/adjointOutletPressurePower/g \
adjointOutletPressureFvPatchScalarField.H > adjointOutletPressurePowerFvPatchScalarField.H
cd ../adjointOutletVelocityPower

sed s/adjointOutletVelocity/adjointOutletVelocityPower/g \
adjointOutletVelocityFvPatchVectorField.C > adjointOutletVelocityPowerFvPatchVectorField.C
sed s/adjointOutletVelocity/adjointOutletVelocityPower/g \
adjointOutletVelocityFvPatchVectorField.H > adjointOutletVelocityPowerFvPatchVectorField.H
cd ..

Remove the old files:

rm adjointOutletPressurePower/adjointOutletPressureFvPatchScalarField. *
rm adjointQOutletVelocityPower/adjointOutletVelocityFvPatchVectorField.*

Now the new boundary conditions need be included when compiling, by editing Make/files (or
do it by hand as explained in section 3.3.1).

sed -i "s/myAdjointShapeOptimizationFoam.C/myAdjointShapeOptimizationFoam.C\n \
adjointOutletVelocityPower/adjointOutletVelocityPowerFvPatchVectorField.C\n \
adjointOutletPressurePower/adjointOutletPressurePowerFvPatchScalarField.C/g" Make/files

Before including descriptions of how the boundary conditions the needed equations are presented.
The boundary calculations that are to be implemented can be derived from eq. 1.17 and are pre-

20

3.3. CHANGING THE COST FUNCTION CHAPTER 3. MODIFY THE SOLVER

sented below
12
q=1Up Vp+UppUpn+ Z (up,n - 'U'neigh,n) -

r

A Uneigh,t + UpnVp,t
v
Upnt &

UZ — 1112),”, (3.4)

1
2
: (3.5)

u; =

where the term v(n- V)u,, has been approximated as the difference between the velocity in the node
at the patch in question and its neighbouring node, in the domain, divided by the distance between
them, as was done in the previous implementation.

Adjoint pressure

Starting with the boundary condition for the adjoint pressure open
adjointOutletPressurePower/adjointOutletPressurePowerFvPatchScalarField.C with a text
editor of choice. Add #include "RASModel.H" in the header, then scroll down to the “member
function” section and follow the instructions below to modify the updateCoeffs() function.
Create the scalar fields of the magnitude of the adjoint and primal velocities, using the already
defined scalar fields phip and phiap divided by the face area.

scalarField Up.n = phip / patch (). magSf();//Primal

scalarField Uap.n = phiap / patch().magSf();//Adjoint

The variables needed to compute the first two terms on the RHS of eq. 3.4 are now defined. The
effective viscosity and the inverse of the distance are defined similarily to what was done for the flow
uniformity conditions, include:

const incompressible :: RASModel& rasModel =
db ().lookupObject<incompressible : : RASModel>("RASProperties");

scalarField nueff = rasModel.nuEff ()().boundaryField ()[patch ().index ()];

const scalarField& deltainv = patch().deltaCoeffs(); // distance (—1)

The magnitude of the normal component of the adjoint velocity is the remaining term needed before
the operator can be redefined according to eq. 3.4.

scalarField Uaneigh.n = (Uap.patchInternalField () & patch().nf());

operator = ((Up.n x Uap.n) + (Uap&Up) +
nueffxdeltainv*(Uap_.n—Uaneigh_n) —
(0.5xmag(Up)*xmag(Up)) — (Up & patch (). Sf()/patch().magSf())
x (Up & patch ().Sf()/patch().magSf()));

Adjoint velocity

Considering the boundary condition for the adjoint velocity, modify it by opening
adjointOutletVelocityPower/adjointOutletVelocityPowerFvPatchVectorField.C with a text
editor of choice and change it according to the descriptions below.

Add #include "RASModel.H" in the header, then modify the member function updateCoeffs() so
that eq. 3.5 can be calculated. The primal velocity and the adjoint volume flux are already included,
however the adjoint velocity and the primal scalar field phi are also needed.

21

3.4. INCLUDING THE SENSITIVITY OF EACH CELICHAPTER 3. MODIFY THE SOLVER

const fvPatchField<vector>& Uap =
patch ().lookupPatchField<volVectorField , vector>("Ua");

const fvsPatchField<scalar>& phip =
patch ().lookupPatchField<surfaceScalarField , scalar >("phi");

Include the effective viscosity and the distance between the node of the patch and its neighbouring
node, as was done in the pressure condition.

const incompressible :: RASModel& rasModel =
db ().lookupObject<incompressible : : RASModel>("RASProperties");

scalarField nueff = rasModel.nuEff()().boundaryField ()[patch().index ()];

const scalarField& deltainv = patch ().deltaCoeffs(); // dist " (—1)

Considering eq. 3.5 the remaining qunatities needed to compute the tangential component of the
adjoint velocity are the magnitude of the normal component of the primal velocity, the tangen-
tial component of the primal velocity and the tangential component of the adjoint velocity in the
neighbouring node. Include them by adding the following to the code.

//Primal velocity , mag of normal component and tangential component
scalarField Up_ns = phip/patch (). magSf();

vectorField Up_.t =
Up — (phip * patch().Sf())/(patch (). magSf()*patch (). magSf());

//Tangential component of adjoint velocity in neighbouring node
vectorField Uaneigh = Uap.patchInternalField ();

vectorField Uaneigh.n = (Uaneigh & patch ().nf())*patch().nf();
vectorField Uaneigh_t = Uaneigh — Uaneigh_n;

The tangential component of the adjoint velocity can now be calculated using the definition given
in eq. 3.5.

vectorField Uap.t =
((Up-ns*Up_t) + nueffxdeltainv+Uaneigh_t) / (Up_ns+nueffxdeltainv)

Set the total adjoint velocity by addition of the calculated tangential component and the old value
of the normal component (which has to be defined).

vectorField Uap.n = (phiap * patch().Sf())/(patch().magSf()*patch ().magS{

operator==(Uap-t+Uap_n);

3.4 Including the sensitivity of each cell

The sensitivity of each cell with respect to the cost function can sometimes be useful to have as a
result. For example when one considers the cost function of flow uniformity at the outlet a reason-
able result would be that the porosity of cells with too high velocity at the outlet patch would be
punished by an increased porosity. This might however be unwanted for design purposes, in which
case one might not want to update the porosity, but rather have the sensitivity as a result. How to
make this addition to the code is explained below.

In order to be able to see the sensitivity of each cell, an addition to createFields.H has to be

22

3.5. PRINT THE COST FUNCTION CHAPTER 3. MODIFY THE SOLVER

done and the value has to be updated in every loop in myAdjointShapeOptimizationFoam.C.
Introduce a scalar field, “sens”, by adding the following lines at the end of createFields.H

volScalarField sens

(

IOobject
(
"sensitivity",
runTime. timeName () ,
mesh ,
IOobject : : READ_IF PRESENT,
IOobject : : AUTO_WRITE
),
Ua&U

);

Listing 3.4: Addition to createFields.H

Update the scalar field in every iteration step by adding the follwing line in the main loop of
myAdjointShapeOptimizationFoam.C, for example above runTime.write() ;.

sens=Ua&U;

Listing 3.5: Addition to the main loop of myAdjointShapeOptimizationFoam.C

The resuting scalar field will be stored in the file sensitivity in the directory named after the timeName
in the case directory.

3.5 Print the cost function

In order to see how much the cost function is reduced one has to calculate eq. 1.15 or 1.18 depending
on which cost function that is studied. This can be done by including code in the SIMPLE loop of
myAdjointShapeOptimizationFoam.C. However objects that only need to be initiated once should
be initialized in the createFields.H file. Also the patches over which the cost function needs to be
integrated have to be defined. Since the case might have more than one outlet, with different names,
it should be defined in the case settings which patches should be used when calculating the cost
function. Also the number of patches for which the calculations are to be done should be defined in
the case dictionary.

Start to define the variables that should be looked up, in the same dictionary (fvSolution) in
which the user defined velocity is defined when the boundary conditions for flow uniformity is used.
Add the following lines to the end of createFields.H. Note that if flow uniformity at the outlet
boundary condition has been implemented according to the description in section 3.3.1 the dictionary
optFunc does not need to be defined again.

dictionary optFunc =
mesh . solutionDict ().subDict ("objectiveFunctionDict");

int nObjPatch =
optFunc.lookupOrDefault<scalar >("numberObjectivePatches" ,0);

int objFunction =
optFunc.lookupOrDefault<scalar >("objectiveFunction", 0);

wordList objPatchNames =
optFunc.lookup ("objectivePatchesNames");

23

3.5. PRINT THE COST FUNCTION CHAPTER 3. MODIFY THE SOLVER

It should be noted that this code uses an integer objFunction to choose which objective function
will be calculated. 0 means that no objective function has been defined, 1 and 2 stands for power
dissipation and flow uniformity at the outlet respectively, which can be seen when the actual cal-
culation of the cost function is carried out in a later stage. To clarify what is done a few Info
statements can be included, in order to be able to identify what cost function and settings have been
chosen. Print it to the log file using.

Info<<"Initializing objective function calculation:'"<<endl;
Info<<"The objective function chosen is:"<<objFunction<<endl;
Info<<"Name of the patches for which the cost

function will be calculated:"<<objPatchNames<<endl;
Info<<"Number of patches:"<<nObjPatch<<endl;

The name of the patches can be used to find their actual identities, add the following lines.

label objPatchList [nObjPatch];
int iLoop;
for (iLoop=0; iLoop<nObjPatch; iLoop++)
{
objPatchList [iLoop]| =
mesh . boundaryMesh (). findPatchID (objPatchNames[iLoop]);
}

Now the calculations of the cost function are readily implemented in the main loop of
myAdjointShapeOptimizationFoam.C. A convenient way to do this is to include a file where the
calculations are done. Add the following to loop in the sovler, e.g. on the line after the Info<<
statement returning the time step in the very beginning of the while loop:

#include "costFunction.H"

Create costFunction.H and place it in the same directory as the solver definition file. The code
needed for the calculations is the implementation of definition of the cost functions, eq. 1.15 and
1.18 for power dissipation and flow uniformity at the outlet respectively. The integrals reduce to
summation over values stored in the nodes of the patch in question. The sum function can be used
for this summation. Start by defining the scalars which will be the values of the objective function.

scalar jDissPower (0);
scalar jFlowUni (0);

Next construct a for loop running over the number of patches, using nObjPatch already defined to
formulate the end criteria and if statements to determine which objective function is to be calculated.

for (iLoop=0; iLoop<nObjPatch; iLoop++)
{
if (objFunction==1) {
jDissPower =
jDissPower — sum(
phi.boundaryField ()[objPatchList [iLoop]]=*
(p.boundaryField ()[objPatchList [iLoop]]
+ 0.5%
magSqr (U. boundaryField ()[objPatchList [iLoop]]))

E

else if (objFunction==2) {
jFlowUni =
jFlowUni + sum (0.5x
magSqr (U. boundaryField ()[objPatchList [iLoop]]

24

3.5. PRINT THE COST FUNCTION CHAPTER 3. MODIFY THE SOLVER

—Ud. boundaryField () [objPatchList [iLoop]])
);

}

Print the value using Info statements and the integer describing which cost function is used.

if (objFunction==1) {
Info<<"Objective function
(Power dissipated) J: "<<jDissPower<<endl;
}
else if (objFunction==2) {
Info<<"Objective function
(Flow uni at outlet) J: "<<jFlowUni<<endl;

}

The value of the objective function is printed in the log file when running the solver and must
therefore be searched for and stored in some way, an example of how this is done can be found in
the next chapter, section 4.2.1.

25

Chapter 4

Setting up a case

Approximations done in the derivations of the model require an incompressible, steady state case.
There are also requirements on the boundary conditions of the primal velocities. Since the aim of
this report is not do detailed studies on a specific case the tutorial case pitzDaily will be copied
from the tutorial folder in the openFoam installation. Note that this case is a simple 2D case and
convergence should not prove to be a problem. For more complicated 3D cases with poorer meshes
a more detailed choice of schemes and relaxation factors might prove necessary. Also initializing the
primal and adjoint fields by running the adjoint solver without updating the porosity and running
the simulations from latestTime can reduce the stability concerns and decrease the time needed to
obtain converged results.

The changes needed to be done to dictionaries in order to adjust the case to the new cost functions
will then be discussed and presented. However it should be noted that more effort is needed to es-
tablish which settings should and can be used to arrive at as accurate results possible. One example
is the interpolation schemes used for the adjoint quantities.

Finally one example of how post processing will be done in the next chapter, to validate (to some
extent) the modification done in the previous section, will be included. Note that the changes pre-
sented in this section will be for the flow uniformity at the outlet, however a brief discussion of how
the case settings should be defined for the power dissipation objective function will be included when
they differ.

Copy the tutorial

Change directory to where you want to place your case, e.g. in the run directory in the $WM_PROJECT_USER_DIR
by typing

run
Copy the tutorial case using the cp command below
cp -r $FOAM_TUTORIALS/incompressible/adjointShapeOptimizationFoam/pitzDaily .

Moving into the case folder and using a tree command one can see a directory struction as presented
in Figure 4.1.

26

4.1. PRE PROCESSING CHAPTER 4. SETTING UP A CASE

pitzDaily/
L0/
epsilon
k
nut

p

pa

U

Ua

| _constant/

polyMesh/
blockMeshDict

RASProperties

transportProperties

| _system/

controlDict

fvSchemes
fvSolution

Figure 4.1: Directory structre for the tutorial case pitzDaily.

4.1 Pre processing

4.1.1 Initial and boundary conditions

The boundary conditions of the primal and adjoint variables are discussed and summarized in section
1.1. Starting with the primal velocity and pressure the files 0/U and 0/p need to be modified so that
they coincide with the ones presented in Table 1.1. Studying the given conditions in the copied case
one can see that the only one in need of modification is the outlet BC for the velocity, hence change
it to

outlet

{
}

type zeroGradient ;

Listing 4.1: File 0/U

The boundary conditions of the adjoint quantities depend on which objective function that is to be
applied, as described in section 1.1. Table 4.1 summarizes the derivations done in previous sections.
The resulting boundary fields for the adjoint pressure and velocity can be seen in Listing 4.2 and
4.3 respectively. Note that they are for the flow uniformity cost function.

boundaryField

{

inlet

{

type zeroGradient ;

}

outlet

{

type adjointOutletPressure;
value uniform O0;

27

4.1. PRE PROCESSING

CHAPTER 4. SETTING UP A CASE

Wall

Inlet

Outlet

Prescribed value, 0

Prescribed value, 0

adjointOutletVelocityUni

Zero gradient

Zero gradient

adjointOutletPressureUni

(a)

Wall

Inlet

Outlet

Prescribed value, 0

Prescribed value, u,, = v,

adjointOutletVelocityPower

Zero gradient

Zero gradient

adjointOutletPressurePower

(b)

Table 4.1: Boundary conditions for the adjoint variables u and g, for a) the flow uniformity at the outlet
and b) the power dissipation cost function.

}

upperWall

{
type

}

lowerWall
{
type

}

frontAndBack
{
type

}

zeroGradient ;

zeroGradient ;

empty ;

Listing 4.2: File 0/pa

boundaryField

{

inlet

{
type
value

}

outlet

{
type
value

}

upperWall

{
type
value

}

lowerWall

fixedValue;
uniform (0 0 0);

adjointOutletVeloci
uniform (0 0 0);

fixedValue;
uniform (0 0 0);

28

ty;

4.1. PRE PROCESSING CHAPTER 4. SETTING UP A CASE

{

type fixedValue;
value uniform (0 0 0);
}

frontAndBack

{

type empty ;

}

Listing 4.3: File 0/Ua

When it comes to the evaluation of the variables in the turbulence model used, i.e. 0/epsilon, 0/k
and 0/nut, the conditions and wall functions defined in the tutorial will be used.

4.1.2 User defined parameters
constant/transportProperties

transportPropoerties is a dictionary defining data of the fluid, e.g. viscosity and density. This
is also where adjointShapeOptimizationFoam expects the factor, describing the step length times
the cell volume, for the porosity update in the steepest descent algorithm and the maximum of
alpha, as described in section 2.1.2. The value of alphaMax is of course case dependent, for cases
when the sensitivity has a chance of becoming large, i.e. large velocities (see eq. 1.5), it should be
increased. lambda is a value of the step size used in the optimization algorithm. Finding an optimal
value of it is, as mentioned before, an optimization problem of its own. Too small might result in
very slowly converging results, while too large might “miss” the optimal value of alpha resulting in
convergence problems. A more detailed analysis should be carried out before deciding a value for
larger industrial cases. For the tutorial case the file can be left unedited, however in some of the
cases, for which results are shown in the next chapter, it has been decreased to 1e3.

transportModel Newtonian;

nu nu [0 2 -1 00 0 0] le—5;
lambda lambda [0 -2 100 0 0] leb;
alphaMax alphaMax [0 0 =1 0 0 0 0] 200.0;

Listing 4.4: File transportProperties

constant/RASProperties

The dictionary selecting the turbulence model to be used. In the tutorial kEpsilon is used, leave
the file unedited.

4.1.3 System settings
system/fvSolution

The solvers defined by default in the tutorial case will be used. As for the under relaxation factors
for the different variables I am sure everyone has their own preferred values. Worth mentioning
is that the relaxation factor for the porosity update of course influences the step size mentioned

29

4.2. POST PROCESSING CHAPTER 4. SETTING UP A CASE

above. For the case at hand the default values are fine, however the user defined sub-dictionary
objectiveFunctionDict is located in the solution dictionary and hence has to be added. For the
flow uniformity at the outlet the value of the cost function only contain an integral over the outlet
and the velocity v? has to be defined. Listing 4.5 presents the additional dictionary to be added
in fvSolution. Note that if power dissipation cost function is to be evaluated objectiveFunction
should be changed from 2 to 1 and the inlet should be added to both numberObjectivePatches and
objectivePatchesNames.

objectiveFunctionDict

{

objectiveFunction 2;
numberObjectivePatches 1;
objectivePatchesNames (outlet);
Uduserdefnodim (10 0 0);

// ok ok ok ok ok ok ok ok ok ok ok ook kK Kk ok ok ok Kk Kk ok sk ok ok ok ok ok ok sk ok ok ok ok ook Kk oKk ok ok ok ok Kk ok ok ok ok ok //

Listing 4.5: File system/fvSolution

system/fvSchemes

As seen in Listing 4.5 first order upwind scheme is applied to convection terms. Although inaccurate
the article mentions stability concerns if anything else is used, stressing the need of a fine mesh to
reduce the error.

system/controlDict

One might want to increase the number of iterations in order to let the variables have a little more
time to converge. Apart from that use the default contols defined in the tutorial.

4.1.4 Mesh

For demonstrational purposes the mesh will not be changed. However the fact that first order upwind
scheme is used result in a necessity of a finer mesh. Since one does not know where the porosity
field will be placed beforehand one can argue that a uniform mesh should be used. The porosity
field might result in a flow field with gradients (and small scales) offset from the wall regions. The
implemented handling, e.g. wall functions or a refined mesh, of those regions does not contribute
and the resolution of the primal flow becomes one of the major concerns of the solver.

4.2 Post processing

4.2.1 Using gnuPlot to plot the value of the cost function

The current implementation writes the value of the cost function in the log file when running the
solver, if the cost functions is evaluated as showed in section 3.5. Hence the data needs to be ex-
tracted from this file. One way is to use the grep command to extract the data and then gnuPlot
to visualize it. An example using this procedure can be found below.

grep ’Objective function (Power dissipated) J:’ log > valueObj.xy
sed -i s/’Objective function (Power dissipated) J: ’/’’/g valueObj.xy

Now to use gnuPlot to plot the data stored in the valueQObj.xy file by typing

30

4.2. POST PROCESSING CHAPTER 4. SETTING UP A CASE

gnuplot

set terminal epslatex

set output "valueObj.tex"

set format xy "$%g$"

set xlabel "Iteration step"

set ylabel "J"

plot [0:nI] [0:yMax] "valueObj.xy" with points

Or simply store the gnuplot commands in a file, e.g. gnuCommands.gp, and type

gnuplot gnuCommands.gp

Note that [0:nI] and [0:ymax] set the limit of the 2- and y-axis respectively.

31

Chapter 5

Results

5.1 Flow uniformity at the outlet

5.1.1 pitzDaily

The results from following the instructions in the previous chapter is presented here. Important to
note that is that the presented figures originate from an implementation slightly different from the
one presented in chapter 3. Some last minute modifications were carried out to correct some sign
errors. Since the difference between the results was small the figures were not updated, the reader
is instead encouraged to try the supplied solver himself to see the differences. For the interested the
below figures is achieved by changing the sign of the velocity outlet boundary condition, eq. 3.2 and
3.5 for flow uniformity and power dissipation respectively, in the supplied solver.

The number of iterations has been increased in order to let the results fully converge. Figure 5.1
shows the velocity field and Figure 5.2 the corresponding sensitivity field. Comparing the two the
sensitivity can be seen to be negative where the primal velocity is greater than average and hence
punishing those cells by increasing the sensitivity would be favourable w.r.t. reducing the objective
function value. In regions with below average velocity the sensitivity is greater than zero, indicating
that punishment via increased porosity would increase the objective function value.

32

5.1. FLOW UNIFORMITY AT THE OUTLET CHAPTER 5. RESULTS

U Magnitude
0.0043046 10.18138

Figure 5.1: Final porosity and primal velocity field.

33

5.1. FLOW UNIFORMITY AT THE OUTLET CHAPTER 5. RESULTS

sensitivity
0 1 2
| P o | | | (P R O
-0.49143 2.728367

Figure 5.2: Final porosity and primal velocity field.

34

5.2. POWER DISSIPATION CHAPTER 5. RESULTS

5.2 Power dissipation

5.2.1 pitzDaily

In this section results from the pitzdDaily case is presented using the solver for power dissipation
cost function. The simulations are run for 3000 iterations steps to ensure converged results, however
studying Figure 5.3 the results can be seen to converge earlier than that. Comparing the value of J
when the porosity field is used as compared to when it is not, Figure 5.3b) and 5.3a) respectively,
the value of the cost function can be seen to be reduced from 0.00354508 to 0.00198719. Hence a
reduction of about 43.9% in power dissipated. The final corresponding porosity field can be seen in
Figure 5.4.

35

5.2. POWER DISSIPATION CHAPTER 5. RESULTS

0.006 -
”valueObjFunc.xy” +

0.005 .

0.004 4

~ 0.003 .

0.002

0.001 4

O 1 1 1 1 1
0 500 1000 1500 2000 2500 3000

Iteration step

(a)

0.006 T . . T T
”valueObjFunc.xy” +
0.005

0.004
N

~ 0.003

0.002

0.001

O 1 1 1 1 1
0 500 1000 1500 2000 2500 3000

Iteration step

(b)

Figure 5.3: Graphs displying the value of the objective function for the pitzDaily case; a) Using a relaxation
factor for alpha of 0, i.e. not updating the porosity; b) Updating the porosity using the sovler for power
dissipation.

36

5.2. POWER DISSIPATION CHAPTER 5. RESULTS

alpha
dt?fl}l 1 ﬁlugl 11 |1|||2|E|]IDI (NN '1??“
Mﬂ i 1999.898

Figure 5.4: Final porosity and primal velocity field.

37

5.2. POWER DISSIPATION CHAPTER 5. RESULTS

5.2.2 Pipe bend example

To test the modifications on a different case a blockMeshDict for a ducted flow in a box was created.
As an industrial application this can be seen as a simplified case in which one wants to desgin the
optimal pipe bend in a domain with constraints described by the boundaries. The case folder can be
downloaded on the course homepage. Note that the mesh is uniform and fine throughout the entire
domain to reduce the errors caused by applying first order upwind scheme and because the porosity
update can happen anywhere. Figure 5.5-5.9 visuzalize the porosity field for different iteration steps.

38

5.2. POWER DISSIPATION CHAPTER 5. RESULTS

dlpha
00,9481

400

o
o
o

e}
o
o

Dm'l"llll||||||||l"i'
—
(]
(o]

Figure 5.5: Porosity field of the “pipe-bend” test case, at iteration number 200.

39

5.2. POWER DISSIPATION CHAPTER 5. RESULTS

dlpha
00,9481

400

o
o
o

e}
o
o

Dml"l‘lllllllllll“i"
—
(]
(o]

Figure 5.6: Porosity field of the “pipe-bend” test case, at iteration number 600.

40

5.2. POWER DISSIPATION CHAPTER 5. RESULTS

dlpha
00,9481

400

w
8

N
8

Dmﬂ..lllllllllllll..i.
—
(]
(o]

Figure 5.7: Porosity field of the “pipe-bend” test case, at iteration number 1100.

41

5.2. POWER DISSIPATION CHAPTER 5. RESULTS

dlpha
00,9481

400

w
8

N
8

DMT”[..I....I.H'T
—
(]
(o]

Figure 5.8: Porosity field of the “pipe-bend” test case, at iteration number 3600.

42

5.2. POWER DISSIPATION CHAPTER 5. RESULTS

alpha
G9.GA81

400

w
8

5

Gm"l”llllllllllllli
—
o
(o]

Figure 5.9: Porosity field of the “pipe-bend” test case, at iteration number 7500. Note that it converged
earlier that this iteration step.

43

Chapter 6

Limitations

Even though the advantages of an adjoint based optimization algorithm are many the project work
has also highlighted problems with the method, or rather problems concerning the implementation of
the algorithm. One of the biggest of those concern being the bad resolution of the primal flow. The
results of the case presented in section 5.2.2 serves as a good example of one of the reasons, namely
that the porosity field displaces the near wall region to areas where it is not resolved. However it
might serve as a first rough topology change as a first step in a design procedure.

The current implementation is also limited in the sense that it only handles a very specific kind

of cases. The first and foremost being that it is only suited for ducted, steady state flows, where the
approximations done are reasonable.

6.1 Project suggestions

- Implement a process where the porosity field is used to create a new geometry.
- Modify the present solver to give surface sensitives rather than topology changes.

- Modify the present solver to a cost function with volumetric cost functions. This will result
in some contribution to the adjoint Navier-Stokes equations.

- Analyze the optimization algorithm of the present sovler in more detail. Is it the optimal way
to implement the steepest descent algorithm, what about the step length? Describe how modifica-
tions to the optimization method can be done / change the optimization algorithm from steeepest
to something else, e.g. Newtons method.

44

6.1. PROJECT SUGGESTIONS CHAPTER 6. LIMITATIONS

Bibliography

Othmer, C. & de Villiers, E. & Weller, H.G. (2007). Implementation of a continuous adjoint

for topology optimization of ducted flows. American Institute of Aeronautics and Astronautics,
ATAA-3947.

Othmer, C. (2008). A continuous adjoint formulation for the computation of topological

and surface sensitives of ducted flows. Int. J. Numer. Meth. Fluid, 58, 861-877.

Versteeg, H. K. & Malalasekera, W. (2007). An Introduction to Computational Fluid Dynamics

The Finite Volume Method. Harlow: Pearson Education Limited.

Andreasson, N. & Evgrafov, A. & Patriksson, M. (2005). An Introduction to Continuous Optimization
Lund: Studentlitteratur AB

45

